

Applying Protective Coatings to a Range of Bridge Substrates

Bobby W. Meade

Greenman Pederson Inc.

Theodore Hopwood II, P.E.

Kentucky Transportation Center

Traditional View of Protective Coatings

- Prevention of corrosion on steel bridge members
 - New structures
 - Maintenance painting
 - remove & replace
 - repair
 - overcoat
- Differences
 - Surface preparation & application methods
 - Coatings

New Bridge Painting

- Abrasive blasted substrates (NACE No. 1/SSPC SP5)
 - Applied to non-corroded/uncontaminated steel
- Shop application of zinc primer part of 2-3 coat systems
- Fewest painting problems
 - Longest service lives

Fabrication Shop Painting

Maintenance Painting

- Remove & Replace
- Repair
- Overcoat

Removal & Replace

- Similar surface preparation & coatings to shop painting
 - Difficult conditions
- Surface preparation < shop painting
 - Soluble salt contamination a problem
- Service life < coatings on new steel

Total Removal

Repair

- Spot or Zone
- Consider the existing coating
 - Compatibility
 - Condition
- Must address condition of existing steel
 - Rough substrates & pitting
 - Soluble salt contamination

Evaluation of Existing Coating

Spot Painting

Zone Painting

Overcoating

- Encapsulation
- Consider the existing substrate
 - Material compatibility
 - Proof testing
 - Soluble salt contamination

Overcoating

Weathering Steels

- Issues with unhindered corrosion
 - Soluble salt contamination
 - Extended time of wetness
- Aesthetics

Weathering Steels

Emerging Challenges for Protective Coatings

- New materials to be protected
 - Reinforced concrete
 - Galvanized steel
 - Polymers
 - Composites
- New types of protection needed
 - UV protection
 - Fire/heat resistance
 - Moisture penetration
 - Extended service
 - Anti-icing
 - Aesthetics/anti-graffiti

Coatings For Reinforced Concrete

- Damage due to deicing salts
- Cured and uncured concrete

Protective Coatings for Reinforced Concrete

Surface Preparation

Painting Reinforced Concrete

- Applying protective coating
 - Typically a 1 or 2-coat system
 - Voids in coating are unavoidable

Painting Reinforced Concrete

Hot-Dip Galvanizing (HDG)

Shop application

- Dipped in molten zinc bath
 - Forms four layers of zinc-iron alloys (pure zinc at surface)
- Concerns
 - Steel chemistry
 - Current standards and guides

Hot-Dip Galvanized Steel

Hot Dipping

Thermal Spraying/Metallizing

- Used for structure corrosion protection
 - Both shop and maintenance applications
 - Pure Zn, Zn-Al (85-15) and pure Al
- The substrate is not melted
 - Molten droplets hit substrate & solidify
- Coating is porous
 - Commonly sealed with low-viscosity resin
- Requires NACE No. 1/SSPC SP5 White Metal Blast cleaned surface

Thermal Sprayed Bridge Steel

Other Zinc Coatings

Metallized Hot-Dip Galvanized

ized Electroplated

Duplex Systems

- Paint over HDG & Thermal Spray
- Painting over HDG
 - Requires special surface treatment
 - Blast-cleaned
 - Use of wash primer
 - Easier to coat after HDG is weathered
- Excellent service life
 - 1.5 x individual service lives of (HDG + paint)

Duplex Coatings

Duplex Coating – Surface Preparation to Top Coat

Polymers

- Common application is for protective piping on stay cables/post-tensioning ducts
 - HDPE/polypropylene piping
- Polymer wraps/tapes are also used to protect suspension bridge and stay cables/piping
 - Proprietary systems (chlorosufonated polyurethane)
 - Tedlar tape (polyvinyl fluoride film)

Piping Material Deterioration

Piping Material Deterioration

Composites

- Composites have been used on a few experimental bridges
- More common applications have been to strengthen concrete bridges
 - Design deficiencies
 - Vehicle impacts to overpass structures
- Potential issues with composites
 - Excessive moisture uptake
 - UV degradation
 - Fire damage

Composites

Heat-Resistant Coatings

- Primary problem is hydrocarbon fires
- Most common exposures
 - Overpasses
 - Bridge wires
 - Suspenders & fittings
 - Stay cables

Bridge Fires

Miscellaneous Coatings

Conclusions

- Traditional steel coatings are still a challenge
- Concrete will be the next big use of protective coatings
- Emerging substrates require coating protection
- Coatings can be used to address other problems as well